【河北卷】河北省邢台市邢襄联盟2024-2025学年高三上学期开学考试(金太阳25-05C)(9.2-9.3),高中\高三\河北省\河北省邢台市质检联盟\2024-2025学年\数学三零论坛(30论坛)用百度云盘、腾讯云盘分享的原卷版、解析版及答案,在云盘中的课件资料可在线阅读及保存到自己的云盘,此电子版课件永久免费阅读及下载。
高三数学考试参考答案 1.C【解析】本题考查集合的运算,考查数学运算的核心素养. 依题意得A={x2气<0}=(-∞,0U(2,+∞),B=(x2-x≤1)=[1,+∞),则AnB =(2,十0∞) 2.A【解析】本题考查复数的运算,考查数学运算的核心素养。 由题意可得=异=1-i.则2:-=21-D-1+D=1-3说 3.D【解析】本题考查三角恒等变换,考查数学运算的核心素养 由题意可得cos(年-2a)=cos(2a-平)=1-2sim㎡(a-吾)=1-2×(号)'=号 4.B【解析】本题考查经验回归方程,考查数据分析的核心素养 =}×(3+6+9+12)=2=7.5,=×24+20+14+10)-60-17, 将样本中心点(7.5,17)的坐标代入经验回归方程y=ix十4, 得17=-1.6×7.5+a,解得a=29. 5.A【解析】本题考查双曲线的几何性质,考查直观想象的核心素养, 设AF1|=m.因为△ABF2为等边三角形,所以|AF2=2m,|FF2=V3m=2c. 因为|AF:一A51=m=2a,所以双曲线M的离心率为5=5m=尽. 6.D【解析】本题考查函数的单调性,考查逻辑推理的核心素养 由题可知x+四+4>0在[1,十o∞)上恒成立,所以m>一x2一4x,则m>一5. 当一5<m≤0时,y=x十四+4在[1,十o∞)上单调递增,符合题意: 当m>0时,√m≤1,解得0<m≤1.综上,m的取值范围为(一5,1门 7.C【解析】本题考查函数的极值点,考查逻辑推理的核心素养 f(x)=x2-x十(x-a)(2x一1),则f(a)=a2一a=0,解得a=0或a=1.结合图象(图略)可 知,当a=0时,f(x)=(x一a)(x2一x)在x=a处取得极大值,当a=1时,f(x)=(x一a)(x2一x)在 x=a处取得极小值.故选C 8.B【解析】本题考查排列组合,考查逻辑推理的核心素养。 由题意,将男生和女生排列共有A=120种排法,道具A和B必须被分配给队伍中的两个 人,且这两人不能站在一起有A号一6×2=30种排法.故满足上述所有条件的排列方式共有 120×30=3600种. 9.ABC【解析】本题考查圆柱与圆锥的结构特征,考查直观想象和数学运算的核心素养. 设圆柱和圆锥的底面半径为r,高为,则V胜=h,V=弓h,则圆柱和圆锥的体积之 比为3,故A正确:圆锥的母线长为√十严,而它们的侧面积相等,所以2r·h=r· √2十,则3h2=产,即r=√3h,则圆柱的底面半径和高之比为5,故B正确:圆锥的母线长 为2h,则圆锥的母线和高之比为2,故C正确:圆柱的表面积S,=22十2πh=(6十23)2,圆锥 的表面积5,=r十r·2h=(3+25),则2=2-2,故D错误 10.BD【解析】本题考查三角函数的图象,考查数学运算的核心素养 因为f(-x)≠-fx),故A错误:f(-受-x)+f(x)=sin(-受-x+cos(-受-x)十 (-受-x)十sinx十cosx十x=-受,所以f(x)的图象关于点(-牙,-)对称,故B正 确:f(π一x)=sin(π一x)十cos(π一x)十π一x=sinx一cosx十π一x≠f(x),故C错误: f(x)=cosx-sinx十1=√2cos(x+)+1,则f()=0,并结合y=∫(x)的图象(图 略),可知x=乏是f()的极大值点,故D正确。 11.ACD【解析】本题考查对数的运算以及不等式,考查逻辑推理和数学运算的核心素养。 由题可知a∈(1,2),b∈(3,4),所以a十b>4,故A正确: 日+六=g5+g2=g10=1,4片=+<+1=64厄.放B错误: 由日+六-1,得ab=a+6,所以a6+1D=2a+6=(合+若)2a+b)=3+名+号≥3+ 2√2,因为W2a≠b,所以a(b+1)>3+22,故C正确 因为c<0,方+是=lg2+1g0.06=lg0.12>-1,所以徒>-1,即6+c+bc<0,放D 正确 12.6【解析】本题考查平面向量的运算,考查数学运算的核心素养 因为a十b=c,所以 1一2=少解得 则b·c=-2y十xy=2十4=6. 3+x=y, y=-1. 13.7【解析】本题考查直线与圆的位置关系,考查逻辑推理的核心素养 由a2+:=2a-2b,可得(a-1)2+(b+1)2=2,所以点(a,b)在圆(x-1)2+(y+1)2=2上. 又-二己所以,气名表示点@,6)与点(一1,3)连线的斜率,结合图象(图 a+1 略)可知,当这条直线与圆相切时,取得最值.设过点(一1,3)的直线【的方程为y一3=k(x +1D,即kx一y十k十3=0,若1与圆相切,则十十3=反,解得k=-1或k=一7,所 √1十k 以的最大值为7。 14.V3g 【解析】本题考查四棱锥的结构特征,考查直观想象和逻辑推理的核心素养 3 如图,因为AB=BD=2且底面ABCD为菱形, 所以△ABD为等边三角形 过点P作底面ABCD的垂线,与底面交于点O,作OE,OF分别垂直于 AD.BC. 因为AD∥BC,所以EF⊥AD.又AD⊥PO,EF∩OP=O, 所以ADL平面PEF,则ADLPE,BCLPF,.即PE=PF=2,OE=EF= 2 PO=P-OE= 2 故四棱锥P-ABCD的体积为号×2X2X血吾×至= 2 31 15.解:(1)f(x)=1-(lnx十1)=-lnx, 1分 所以切线的斜率为f(们)=0,即b=0.…3分 又f1)=1-a,所以1-a=2,则a=-1. 放a=一1,b=0。…6分 (2)令f(x)=0,得a=x一xlnx 设g(x)=x一xlnx,则g(x)=一lnx, 当0<x<1时,g(x)>0,当x>1时,(x)<0 所以g(x)在(0,1)上单调递增,在(1,+©)上单调递减, 所以g(x)的最大值为g(们)=1,…10分 且当x趋于十o©时,g(x)趋于一oo,依题意可得y=a与y=g(x)无交点,所以a>l, 所以要使f(x)在定义域上无零点,则a的取值范围为(1,十o∞).…13分 16.(1)证明:取G为CD的中点,连接AG,FG,CD 因为E为C1D1的中点,所以AE∥AG.…1分 因为AEC平面AEB,AG过平而AEB,所以AG∥平面AEB.·2分 因为F为DD1的中点,所以FG∥CD 又A1B∥CD1,所以FG∥AB… …3分 因为ABC平面A,EB,FG丈平面AEB,所以FG∥平面AEB. 4分 因为AG∩FG=G,所以平面AFG∥平面AEB.…6分 D 因为AFC平面AFG,所以AF∥平面AEB.…7分 (2)解:以D为原点,DA,D心,D可的方向分别为xy,z轴的正方向,建立 如图所示的空间直角坐标系.设AD=1,则A(1,0,2),B(1,2,0),C1(0, 2,2),D1(0,0,2). 因为E为C1D1的中点,所以E(0,1,2),所以AE=(-1,1,0),AB=(0,2,一2).…9分
样本阅读结束,请到下载地址中:阅读全文及下载